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ABSTRACT

A time domain reflectometer is considered a closed-

loop, one dimensional radar system. Applying the principle

of time domain reflectometry to the detection of cryogenic

liquid levels, measurements on the order of ±0. 3% of total

liquid level probe length are possible.

The time domain reflectometer liquid level measure-

ment is independent of liquid density variations and is simple

to calibrate and operate. Construction of the liquid level

sensing' probe is described.

Key words: Coaxial probe; emptying rate; fill rate; liquid

level; time domain reflectometer,
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INTRODUCTION

[1-4]
This paper shows how a time domain reflectometer (TDR)

provides a simple yet accurate method for making liquid level measure-

ments of cryogenic fluids. Measurement of cryogenic liquid levels in

storage vessels have generally been performed with discrete sensors

arranged in a ladder configuration. The accuracy of this technique is

determined by the spacing of the sensors and their response time.

Capacitors have been used both as point sensors and zone sensors.

The zone sensor is a large capacitor that samples the entire liquid level

and measures the average density of the fluid. The disadvantage in using

capacitors for liquid level sensors is that one must know the average density

of the sampled 'fluid. This requires a measurement of the dielectric con-

stant of the fluid and relating this dielectric constant to density with the

Clausius-Mossotti equation. This equation is based on simplifying assump-

tions and may be in error by as much as two percent.

:: Co-nt ;:,wtu ion of the National Bureau of Standards, not subject to copyright.
'Fhib ,vJ;;' was performed-at the National Bureau of Standards Cunder the
splons("ir;.iip of the American Gas Association Headquarters, the AGA
PilpcuirL: iesearch Committee, and the NASA-Marshall Space Flight Center.
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Capacitance liquid level gages are high impedance devices and can

give erroneous readings when subjected to intense nuclear radiation

fields [5]

A TDR can be considered to be a one-dimensional, closed loop radar

[4]
system This technique involves sending a fast rise time (< 120 pico-

seconds) pulse down a transmission line. Discontinuities (imperfections)

in the line will reflect some energy back to the generator. The amount re-

flected is proportional to the magnitude of the discontinuity encountered.

These transmitted and reflected signals are monitored on an oscilloscope

screen.

A time domain reflectometer may be used to make the liquid level

and vessel flow (fill or emptying) rate measurements. The measurement

depends on an abrupt change in dielectric constant in the sensing probe (a

coaxial line). The measurement is not perturbed by variations in liquid

density.

Unlike capacitance devices, the TDR system is a low impedance

device and is insensitive to high nuclear radiation fields[6 ] Furthermore,

a TDR provides a visual (oscillographic) display as well as a numerical

readout.

A brief history of time domain reflectometry and transmission

line theory follows. Sufficient references are given for a reader not

familialr with time domain reflectometry or transmission line theory to

obtain tinw necessary background.
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TIME DOMAIN REFLECTOMETRY

Timle domain reflectometry (TDR) is a state of the art application

of established pulse reflection measurement techniques. With the develop-

mnent of fast rise time generators and sampling oscilloscopes, the appli-

cation of pulse reflection techniques to high frequency transmission systems

has become a common practice.

Figure 1 illustrates a TDR system. The step generator launches

a voltage pulse down the transmission line toward the liquid surface.

When i.;C: pulse encounters the liquid surface, part of the energy in the pulse

is reflected back toward the step generator where the sampling circuits

intercept it and send it to the display. The oscillographic display of the

return pulses give an immediate indication of the nature of the reflecting

discontinuity which may be resistive, or capacitive, or inductive. The

calibrated distance scale of the TDR discloses the location of the reflecting'

discontinuities.

The TDR displays the characteristic impedance levels of the trans-

mission line. Transmission line theory shows that the characteristic im-

pedance of a transmission line is determined by the cross-sectional dimen-

sions of the line and by the relative dielectric constant, e , of the medium

between the conductors (we assume negligible resistive losses).

For a right circular coaxial transmission line, as shown in Figure

2 (the kind we use to measure liquid levels), the characteristic impedance,

Z , is defined by

3
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Right Circular Coaxial Transmission Line.
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60 d
Z = log

e

-. (1)
r

Equation (1) shows that the characteristic impedance of the line

changes with either relative dielectric constant, e, or cross-sectional

dimension ratio. It is the abrupt change in e at the gas-liquid interface
r

that is used for measuring both liquid level and flow rate.

Clearly, for constant line dimensions, the change in characteristic

impedance at a gas-liquid interface is given by

e z r as ) (2)
o(liquid) o(gas) r(liquid)

This characteristic impedance is readily disclosed by the time domain

reflectomete r.

PROBE CONSTRUCTION

We constructed a 135 cm long right circular coaxial probe. This

has holes every 30 cm to allow the liquid to penetrate the region between

the conductors. The probe has a characteristic impedance in air of

55 ohms and it has a low temperature coefficient 50 ohm termination.

Figure 1 illustrates a schematic representation of the TDR system

including the probe. Distance dl is the length of the transmission line

from the detector to the probe, d
Z

is that part of the probe length with

gas dielectric, and d
3

is the probe length with liquid dielectric.

Figure 3 is the oscilloscope display for a typical liquid level mea-

surercnnt. Length dl has a characteristic impedance of 50 ohms while

6
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d
2
, the gas fii- ii section, has an impedance of 55 ohms and d3, the

liquid filled lenis, i', has an impedance of 46 ohms.

LIQUID LEVEL MEASUREMENTS

Time delay and magnification control on the TDR permit a detailed

examination of the probe. See Figure 4.

The horizontal displacement of the oscilloscope trace is proportional

to the effective length of the probe, while the vertical displacement is pro-

portional to a characteristic impedance level. The positive slope. of the

vertical output in the TDR trace is used to start a counter and the negative

slope stops the counter. Therefore, the counter indication is proportional to

the length of the gas filled portion of the probe. Distance along the oscillo-

scope display is converted to liquid level in cm as follows.

LL = L - KP, (3)

where LL is the liquid level of the fluid, L is the length of the probe,

K is determined when the probe is empty, and P is the counter interval

time, in milliseconds, of the gas filled length of the probe.

Figure 5 is a liquid level versus counter interval calibration of the

135 cm probe used in the weigh and catch tanks of the liquefied natural gas

flow facility. Accuracy of the liquid level measurement is approximately

±0. 3% of the total probe length.

THE TDR AS A FLOW INDICATOR

The TDR system has been used as a flow indicator by continuously

nmeasuring the counter interval of the gas portion of the probe and plotting
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this interval or liquid level versus timrne, Blowirng the geometric configur-

ation of the. container I the volume flow (.eMpying) ote :ot of the container

can be calculated and plotted.

Figure 6 is a typical comrputer plot if iquiid level versus time. The

geometrical configuratior , of the contiaipjer is a cylinder and consequently

for a constant flow (fill or emptying) rate the the output i linear. These data

were obtained from the hydrogen flow loop a4d: are typical of the flow rates

obtained using liquid hydrogen.

SUMM~EY

Time domain reflectometry is a sirnple, yet accurate system for

continuously measuring liquid !evels of cyogeic fluids. The system is

independent of liquid density variatiqns and is re~ltively simple to calibrate

and operate, Characteristic irmpeance cal.clatiows of a right circular

coaxial probe are straightforward. and the probe is simple to construct.
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